Io's Atmospheric Response to Eclipse: UV Aurorae Observations
K. D. Retherford et al.
Science **318**, 237 (2007);
DOI: 10.1126/science.1147594

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 23, 2014):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/318/5848/237.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2007/10/11/318.5848.237.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/318/5848/237.full.html#related

This article cites 25 articles, 5 of which can be accessed free:
http://www.sciencemag.org/content/318/5848/237.full.html#ref-list-1

This article has been cited by 5 article(s) on the ISI Web of Science

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/318/5848/237.full.html#related-urls
that the troughs are a truly global phenomenon. A trough was seen near longitude 270°W, but that region is geologically complex, with numerous criss-crossing dark lineaments. The north-south offset of the antipodal centers of symmetry, maintained in the New Horizons images, hints at true polar wander of Europa’s ice shell (21–23).

From Earth, the solar phase angle g for the Jupiter system is $\leq 12^\circ$, limiting Earth-based measurement of directional scattering by jovian satellites. Only spacecraft can access higher phase angles. LORRI observed the Galilean satellites at a range of phase angles (table S1), filling gaps in Europa’s solar phase curve between 32° and 103° and between 109° and 143°. The photometric data, corrected for longitudinal variations and normalized to Voyager data (24), are shown in Fig. 4. Europa’s brightness at $g = 70^\circ$ is more than 40% of its fully illuminated brightness, underscoring the unique texture of its surface produced by active resurfacing. The comparable number for Earth’s Moon is only 20%.

Our observations improve measurement of Europa’s phase integral q, which describes the directional scattering properties of light reflected from its surface. The new q value is 1.01 ± 0.04, compared with 1.1 ± 0.1 from previous Voyager data (24). Compared with other actively resurfaced icy satellites, Europa’s q is marginally higher than that of Enceladus (0.89 ± 0.10) (25) but lower than that of Triton (1.14 ± 0.03) (26).

Using a geometric albedo of 0.67 ± 0.03 for LORRI wavelengths (8, 24), we find a new Bond albedo of 0.68 ± 0.05, compared with a previous value of 0.6 ± 0.1 (24), meaning that Europa absorbs less sunlight than previously thought.

References and Notes

Supporting Online Material

www.sciencemag.org/cgi/content/full/318/5848/234/DC1

Table S1
10 July 2007; accepted 21 September 2007; 10.1126/science.1147623

REPORT

Io’s Atmospheric Response to Eclipse: UV Aurorae Observations

K. D. Retherford,1* J. R. Spencer,2 S. A. Stern,3 J. Saur,4 D. F. Strobel,5 A. J. Steffl,2 G. R. Gladstone,1 H. A. Weaver,4 A. F. Cheng,4 J. Wm. Parker,2 D. C. Slater,1 M. H. Versteeg,1 M. W. Davis,2 F. Bagental,1 H. B. Throop,2 R. M. C. Lopes,9 D. C. Reuter,9 A. Lunsford,9 S. J. Conard,6 Le A. Young,7 J. M. Moore10

The New Horizons (NH) spacecraft observed Io’s aurora in eclipse on four occasions during spring 2007. NH Alice ultraviolet spectroscopy and concurrent Hubble Space Telescope ultraviolet imaging in eclipse investigate the relative contribution of volatiles to Io’s atmosphere and its interaction with Jupiter’s magnetosphere. Auroral brightness and morphology variations after eclipse ingress and egress reveal changes in the relative contribution of sublimation and volcanic sources to the atmosphere. Brightnesses viewed at different geometries are best explained by a dramatic difference between the dayside and nightside atmospheric density. Far-ultraviolet aurora morphology reveals the influence of plumes on Io’s electrodynamic interaction with Jupiter’s magnetosphere. Comparisons to detailed simulations of Io’s aurora indicate that volatiles supply 1 to 3% of the dayside atmosphere.

Io is a volcanically active moon of Jupiter, and its volcanism is the ultimate source of material for Io’s sulfur-dioxide atmosphere. The interaction between Io’s atmosphere and the Io plasma torus produces displays of auroral emissions on Io, supplies plasma to Jupiter’s magnetosphere, and physically links Io to Jupiter (1). The relative importance of the volcanoes as a direct, immediate source of the atmosphere, versus sublimation of frosts deposited around these volcanoes, has remained uncertain since the atmosphere’s discovery in 1979 (2, 3). Io’s average dayside surface temperature rapidly drops after eclipse ingress or at night (likely from ~120 K to ~90 K (4, 5)), which is sufficient to diminish the sublimation component of the atmosphere across most of the surface and possibly results in an atmosphere mostly supplied directly from volcanoes.

Auroral observations, particularly while Io is in solar eclipse by Jupiter, can provide information on both Io’s atmosphere and its interaction with Jupiter (6–14). The New Horizons (NH) spacecraft was able to observe Io in eclipse four times during its flyby of Jupiter in late February and early March 2007 (Table 1).

We report NH Alice ultraviolet (UV) spectrometer (15) observations of Io’s eclipse ingress and egress. Io eclipse observations by other NH instruments are reported separately (16, 17). Alice provides spectral images in the extreme- and far-UV (EUV and FUV) pass-bands from 52 nm to 187 nm with 0.3- to 0.4-nm resolution for point sources and 1.0- to 1.2-nm resolution for extended sources, as Io was for our observations (18), and a spatial resolution of 0.1° along the 4° long narrow part of its slit.

Supporting observations were also made with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) (19) on the Hubble Space Telescope (HST). Angular plate scales of 0.034 arcsec/pixel and 0.030 arcsec/pixel on the detector result in slightly rectangular pixels. Use of the SBC’s F125LP filter excludes sky background signal from geocoronal Lyman-α emissions while passing through the atomic oxygen (OI) 130.4 nm and longer FUV emissions of interest for Io.

Auroral emission features include a global limb glow around the disk of the satellite, sub-Jupiter and anti-Jupiter equatorial spots (or glows), and a wake region (on the orbital leading hemisphere, down-
New Horizons at Jupiter

stream relative to the magnetospheric plasma flow). These large-scale features are known to change brightness and location with Jupiter’s changing magnetic field orientation at Io and are diagnostic of the local flow of the Io plasma torus past the satellite and into its atmosphere (10, 11, 20–23). Dramatic visible auroral glows have been seen from numerous volcanic plumes, including the large Tvashtar plume that was active at this time (17).

The question of how much of the dayside atmosphere comes from SO2 frost sublimation versus volcanoes remains difficult to resolve. Previous theoretical work demonstrated that auroral brightness variations with time after Io enters eclipse ingress provide a means to investigate the relative contributions of volcanic and sublimation sources to Io’s dayside atmosphere (14). A relative contribution from volcanoes of 1 to 10% was suggested based on only a few data points with inadequate time coverage.

We observed the time series of Io’s FUV emissions in shadow using Alice (Fig. 1) and the HST/SBC (Fig. 2). The last Alice exposure in IEclipse05 (red points in Fig. 3, A to C) is ~40% brighter than it is in earlier measurements (Table 2) and likely represents predicted posteclipse aurora brightening (14). In IEclipse01, the view is of the dayside, similar to that for HST (Fig. 2). This view includes Io’s wake emissions. The high initial brightnesses and the decrease in brightness after ingress in IEclipse01 (Fig. 3) may be because the amount of sublimation is particularly sensitive to changes after eclipse ingress on the dayside atmosphere. There was little change in volcanic activity observed during the encounter period (17); thus, any changes in Io’s neutral atmosphere density must be attributed to other sources. The plasma torus density is thought to be relatively stable on the time scale of days. The trend of brighter aurora with Io’s location in denser regions of the plasma torus (21) would exacerbate the difference in measured OI 135.6-nm brightnesses between IEclipse01 and IEclipse04 (Fig. S1B). Viewing geometry of the asymmetric atmosphere regions and the large-scale auroral features viewed (e.g., wake viewed in IEclipse01 but not IEclipse04) could explain the differences, but the FUV equatorial spots are consistently brighter than the wake so the IEclipse04 view is favored. Also, measurements of SO2 longitudinal distribution (24) suggest that the dayside equatorial densities in the region viewed in IEclipse01 (at 344°) are a few times less dense than IEclipse04 (at 241°) (Table 2). The two Alice ingress series are best explained by a dramatic difference between the densities of Io’s dayside and nightside atmospheres.

The HST/SBC data (Fig. 3D) show that Io’s FUV brightness decreased between the first and last exposures by roughly factors of 1.5 and 1.3 for square regions of widths 0.55 and 4.0 (Io radii), respectively, centered on Io. The most prominent FUV emission lines that contribute to this image are the same neutral OI 130.4 nm, OI 135.6 nm, and SI 147.9 nm lines observed with Alice (Fig. 1B). However, the first SBC exposure occurred 12 min after unbral ingress, which is after the time expected for the most dramatic variations. Alice observed the key periods for IEclipse01 and IEclipse04, but only two points at -90 min after ingress for this IEclipse03 event. Cassini visible aurora imaging (11) showed similarly moderate variations in brightness over a period starting ~20 min after ingress.

A comparison between aurora simulations and the auroral brightness time series shown in Fig. 3 enables a higher fidelity assessment of Io’s atmospheric sources. Volcanic column densities of $2 \times 10^{14} \text{cm}^{-2}$, $4 \times 10^{14} \text{cm}^{-2}$, and $8 \times 10^{14} \text{cm}^{-2}$ out of $1.5 \times 10^{16} \text{cm}^{-2}$ were used in Fig. 3 (1%, 3%, and 5% cases, respectively). The data are best described by a volcanic contribution of 1 to 3% to a primarily sublimation-supplied dayside atmosphere.

Table 1. NH Io eclipse Alice observation summary. Supporting observations with the HST/SBC are also indicated. IEclipse02 was dropped from the plan and not performed.

<table>
<thead>
<tr>
<th>Visit name</th>
<th>Date</th>
<th>Umbral ingress</th>
<th>Umbral egress</th>
<th>Instrument used</th>
<th>Number of exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEclipse03</td>
<td>2/27/2007</td>
<td>14:21</td>
<td>16:27</td>
<td>Alice</td>
<td>2</td>
</tr>
<tr>
<td>IEclipse04</td>
<td>3/1/2007</td>
<td>8:50</td>
<td>10:56</td>
<td>HST/SBC</td>
<td>8</td>
</tr>
</tbody>
</table>

Fig. 1. (A) Alice spectral image, a combination of all IEclipse04 data. Features include Io in row 17, the Io plasma torus in rows 9 to 22, background interplanetary Lyman-α emissions in rows 7 to 26 (red rectangle/T-shaped slit; near this the sensitivity changes abruptly from a gap in the detector photocathode coverage), and increased detector noise at the left and right edges. Instrument-scattered Lyman-α from Jupiter and/or detector dark signal is ubiquitous at longer wavelengths in all rows and hint at row-to-row flat-field variations known from lab measurements. (B) Alice IEclipse01, IEclipse04, and IEclipse05 Io spectra combined into sunlit and eclipse averages. Spectra for each visit are offset by increments of 200 for clarity. Neutral and ionized atomic emissions are indicated with arrows ("Io" and "Plasma Torus + Io", respectively). The time variability is presented in Fig. 3, and integrated emission line brightnesses are listed in Table 2. Error bars are SDs of the variability. Adjacent rows are averaged for the background subtraction, which is incomplete at longer wavelengths.
Fig. 3. Time series of Io’s auroral emissions in Eclipse. (A) NH Alice IEclipse01, IEclipse03, IEclipse04, and IEclipse05 brightness measurements of OI 135.6 nm emissions are shown with time after umbral eclipse ingress. (B) Same as (A), but normalized to values in eclipse from 50 to 125 min after ingress and compared with aurora simulations (24) for three levels of volcanic contribution. (C) Same as (A) and (B), but normalized to pre-ingress, sunlit values. The last measurement in IEclipse05 supports the predicted post-eclipse brightening. IEclipse01 views the dayside, whereas IEclipse04 views mostly the nightside and is dimmer. These diurnal (phase angle) variations indicate that the atmosphere in shadow (both on the nightside and in eclipse) is supplied primarily by volcanoes (see additional plots in fig. S1). IEclipse01, obtained at roughly twice the distance from NH as IEclipse04, has more statistical noise. (D) HST/ACS/SBC brightness measurements of regions within the limb and extending a few R_J with time in eclipse, concurrent with the IEclipse03 event. The SBC brightnesses decreased by a factor of 1.3 during the period between 20 min and 50 min after ingress.
NH Long Range Reconnaissance Imager (LORRI) images (17). This same feature appears in the HST/SBC image in Fig. 2B, obtained when East Giru was shifted just behind the limb. The auroral feature near East Giru in both LORRI and HST/SBC images is ~15° northward of Jupiter’s field line tangent point at the limb, which suggests that ionospheric currents are diverted northward from this nominal position toward a region of higher gas density near the plume. Similar deviations of the anti-jovian FUV emissions from nominal tangent points observed with STIS are likely caused by the prevalence and distribution of plumes there (21). Volcanic plume aurorae were not identified in previous lower-quality STIS FUV images, which caused an apparent discrepancy with visible images of plume aurorae. The East Giru plume FUV auroral feature in Fig. 2 resolves this discrepancy and reveals the influence of plumes on Io’s electrodynamic interaction. The upstream-side emission feature is more apparent when limb brightened at viewing geometries like those reported in Fig. 2. This feature was predicted by aurora image simulations (22) and is diagnostic of the divergence of the plasma flow upstream of Io, a primary trait of Io’s interaction with the plasma torus.

References and Notes
18. The angular size of Io varies with spacecraft distance but is smaller than the Alice slit width for these data. The spectral resolution varies between 0.3 nm and ~0.9 nm for emissions known to be located near the satellite disk (22); see, e.g., Fig. 2.

REPORT

Io Volcanism Seen by New Horizons: A Major Eruption of the Tvashtar Volcano

J. R. Spencer,1,3* S. A. Stern,2 A. F. Cheng,7 H. A. Weaver,3 D. C. Reuter,4 K. Retherford,5 A. Lunsford,6 J. M. Moore,6 O. Abramov,7 R. M. Lopes,7 J. E. Perry,8 L. Kamp,7 M. Showalter,9 K. L. Jessup,1 F. Marchis,9 P. M. Schenk,10 C. Dumas11

Jupiter’s moon Io is known to host active volcanoes. In February and March 2007, the New Horizons spacecraft obtained a global snapshot of Io’s volcanism. A 350-kilometer-high volcanic plume was seen to emanate from the Tvashtar volcano (62°N, 122°W), a site identified as the source of the Prometheus plume since the last Galileo orbiter observations of Io in late 1999. The plume’s morphology and dynamics support nonballistic models of large Io plumes and also suggest that most visible plume particles condensed within the plume rather than being ejected from the source. Images taken in Jupiter eclipse, nonthermal visible-wavelength emission was seen from individual volcanoes near Io’s sub-Jupiter and anti-Jupiter points. Near-infrared emission from the brightest volcanoes indicates minimum magma temperatures in the 1150°–1335-kelvin range, consistent with basaltic composition.

Supporting Online Material

www.sciencemag.org/cgi/content/full/318/5848/237/DC1
12 OCTOBER 2007 VOL 318 SCIENCE www.sciencemag.org

Table 2. Alice-measured emission line brightness averages and SDs in sunlight and eclipse.

<table>
<thead>
<tr>
<th>Emission line</th>
<th>Type</th>
<th>Disk-average brightness (rayleighs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eclipse01</td>
<td>Eclipse04</td>
</tr>
<tr>
<td>OI 130.4 nm</td>
<td>706 ± 134</td>
<td>445 ± 27</td>
</tr>
<tr>
<td>OI 135.6 nm</td>
<td>597 ± 43</td>
<td>394 ± 14</td>
</tr>
<tr>
<td>Si 147.9 nm</td>
<td>882 ± 177</td>
<td>577 ± 35</td>
</tr>
<tr>
<td></td>
<td>797 ± 57</td>
<td>536 ± 18</td>
</tr>
<tr>
<td></td>
<td>11.1 ± 0.24</td>
<td>1.08 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>11.67 ± 271</td>
<td>986 ± 54</td>
</tr>
<tr>
<td></td>
<td>1205 ± 87</td>
<td>874 ± 28</td>
</tr>
<tr>
<td></td>
<td>0.97 ± 0.24</td>
<td>1.13 ± 0.07</td>
</tr>
</tbody>
</table>

*For emissions known to be located near the satellite disk (22); see, e.g., Fig. 2.
†Eleven volcanic plumes were identified in the NH images (Fig. 1A and table S1). In addition to the single large “Pele-type” plume at Tvashtar, which is described separately, NH observed 10 SO-rich “Prometheus-type” plumes (3–5). These smaller plumes averaged 80 km high and varied greatly in brightness. Plumes seen for the first time by NH include those at Zal and Kerdalagone and a large new plume, 150 km high, at north Lema Region, which has produced a large albedo change. Three of these plumes, north Lema and north and south Masubi, are associated with recent large lava flows, supporting the idea that Prometheus-type plumes result from mobilization of surface volatiles by active lava flows. All active plumes that were on